A novel diamond anvil cell for x-ray diffraction at cryogenic temperatures manufactured by 3D printing.

نویسندگان

  • H Jin
  • C H Woodall
  • X Wang
  • S Parsons
  • K V Kamenev
چکیده

A new miniature high-pressure diamond anvil cell was designed and constructed using 3D micro laser sintering technology. This is the first application of the use of rapid prototyping technology to construct high-pressure apparatus. The cell is specifically designed for use as an X-ray diffraction cell that can be used with commercially available diffractometers and open-flow cryogenic equipment to collect data at low temperature and high pressure. The cell is constructed from stainless steel 316L and is about 9 mm in diameter and 7 mm in height, giving it both small dimensions and low thermal mass, and it will fit into the cooling envelope of a standard CryostreamTM cooling system. The cell is clamped using a customized miniature buttress thread of diameter 7 mm and pitch of 0.5 mm enabled by 3D micro laser sintering technology; such dimensions are not attainable using conventional machining. The buttress thread was used as it has favourable uniaxial load properties allowing for higher pressure and better anvil alignment. The clamp can support the load of at least 1.5 kN according to finite element analysis (FEA) simulations. FEA simulations were also used to compare the performance of the standard thread and the buttress thread, and demonstrate that stress is distributed more uniformly in the latter. Rapid prototyping of the pressure cell by the laser sintering resulted in a substantially higher tensile yield strength of the 316L stainless steel (675 MPa compared to 220 MPa for the wrought type of the same material), which increased the upper pressure limit of the cell. The cell is capable of reaching pressures of up to 15 GPa with 600 μm diameter culets of diamond anvils. Sample temperature and pressure changes on cooling were assessed using X-ray diffraction on samples of NaCl and HMT-d12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Developments On Laser Heated Diamond Anvil Cell

New developments on laser heated diamond anvil cell are reported by introducing a system installed at the Advanced Photon Source (APS). With the system, a laser heating spot of 20 40 μm in diameter can be generated to temperatures over 3000 K for samples in diamond anvil cell; and the temperature gradients in the laser heated volume are less than 100 K. The system is based on the double sided l...

متن کامل

Amorphous boron gasket in diamond anvil cell research

Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Her...

متن کامل

X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth's interior.

Synchrotron-based X-ray emission spectroscopy (XES) is well suited to probing the local electronic structure of 3d transition metals such as Fe and Mn in their host phases. The laser-heated diamond anvil cell technique is uniquely capable of generating ultra-high static pressures and temperatures in excess of 100 GPa and 3000 K. Here X-ray emission spectroscopy and X-ray diffraction have been i...

متن کامل

In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell.

We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical...

متن کامل

Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors?

Experiments using laser-heated diamond anvil cells show that methane (CH4) breaks down to form diamond at pressures between 10 and 50 gigapascals and temperatures of about 2000 to 3000 kelvin. Infrared absorption and Raman spectroscopy, along with x-ray diffraction, indicate the presence of polymeric hydrocarbons in addition to the diamond, which is in agreement with theoretical predictions. Di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 88 3  شماره 

صفحات  -

تاریخ انتشار 2017